This paper evaluates similarities between a priori information supplied by business tendency surveys (that is, expectations), and a posteriori information (that is, realizations). A priori structure is defined by fractions of respondents expressing expectations, and a posteriori structure – by fractions of respondents declaring observed changes in economic variables (realizations). On the basis of empirical analysis of the business tendency survey data on production, prices, employment and general business conditions, the following conclusions have been reached. Production time series exhibits the highest entropy, and prices data – the lowest. Since value of entropy allows to evaluate degree of concentration, in case of prices fractions of survey answers seems to be particularly centered on one of the three options provided in the questionnaire (that is, increase – no change – decrease). Entropy of general business conditions exhibits the highest variability which may be interpreted as volatile changes in information content of surveys from one month to another; in contrast, entropy of production is the least variable. It is also found that public enterprises exhibit lower entropy (as measured by average) and higher variability (as measured by standard deviation) than private enterprises.
tendency surveys, expectations, entropy, dissimilarity of structures
[1] Chomątowski S., Sokołowski A. (1978), Taksonomia struktur, Przegląd Statystyczny 2:217-226.
[2] Doszyń M. (2002) Skłonności a entropia, Przegląd Statystyczny 49:73-78.
[3] Georgescu-Roegen N. (1971) The Entropy Law and the Economic Process, Harvard University Press, Cambridge.
[4] Kempa W. (2002), Zastosowanie entropii empirycznej w badaniu związku korelacyjnego dwóch cech Przegląd Statystyczny 49:163-173.
[5] Kowalczyk H. (2010), O eksperckich ocenach niepewności w ankietach makroekonomicznych, Bank i Kredyt 5:101-122.
[6] Przybyszewski R., Wędrowska E. (2005), Aksjomatyczna teoria entropii, Przegląd Statystyczny 52:85-101.
[7] RIED (2010), Business survey. June 2010, Warsaw School of Economics, Warsaw.
[8] R´enyi A. (1961), On measures of entropy and information, Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, pp. 547-561.
[9] Shannon C. E. (1948)A mathematical theory of communication, The Bell System Technical Journal 27:379-423, 623-656.
[10] Theil H. (1967), Economics and Information Theory, North-Holland Publishing Company, Amsterdam.
[11] Tomczyk E. (2005) Are expectations of Polish industrial enterprises rational? Evidence from business tendency surveys, in:Adamowicz E., Klimkowska J. (eds.) Economic Tendency Surveys and Cyclical Indicators. Polish contribution to the 27th CIRET Conference, Warsaw School of Economics, Warszawa.
[12] WCED (1987), Report of the World Commission on Environment and Development: Our Common Future, NGO Committee on Education (http://www.un-documents.net/wced-ocf.htm).
[13] Wędrowska E. (2009), Oczekiwana ilość informacji o zmianie struktur jako miara niepodobieństwa struktur, paper presented at the XIth Conference “Dynamic Econometric Models”, September 2009, Toruń.